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We present both analytical and numerical solutions describing seepage flows in
an unsaturated permeable seabed induced by transient long waves. The effects of
compressibility of pore water in the seabed due to a small degree of unsaturation
are considered in the investigation. To make the problem tractable analytically, we
first focus our attention on situations where the horizontal scale of the seepage
flow is much larger than the vertical scale. With this simplification the pore-water
pressure in the soil column is governed by a one-dimensional diffusion equation with
a specified pressure at the water–seabed interface and the no-flux condition at the
bottom of the seabed. Analytical solutions for pore-water pressure and velocity are
obtained for arbitrary transient waves. Special cases are studied for periodic waves,
cnoidal waves, solitary waves and bores. Numerical solutions are also obtained by
simultaneously solving the Navier–Stokes equations for water wave motions and
the exact two-dimensional diffusion equation for seepage flows in the seabed. The
analytical solutions are used to check the accuracy of the numerical methods. On the
other hand, numerical solutions extend the applicability of the analytical solutions.
The liquefaction potential in a permeable bed as well as the energy dissipation under
various wave conditions are then discussed.

1. Introduction
In shallow water, wind waves interact with the seabed, resulting in a number of

phenomena. Bathymetric variations affect the direction of wave propagation and the
spatial variation of wave heights, commonly known as refraction and diffraction. The
wave–seabed interaction also leads to energy dissipation. Over a rigid seabed, shear
flows in a laminar or turbulent boundary layer contribute to wave attenuation over
a distance of many wavelengths. If the seabed is composed of sediments, a variety of
dissipation mechanisms associated with the sediment rheology play different roles in
enhancing wave damping and modifying wave characteristics. For instance, the effects
of percolation might become important if seabed sediments consist of coarse sand
or shingle. With fine sediment grain sizes, the sea bottom becomes deformable under
wave loading and the effects of poro-elasticity need to be considered in estimating
energy dissipation. When the seabed consists of silt or mud, the physical processes
become more complex. Depending on the density of the mud, it may behave like a
viscous fluid, or visco-elastic materials or visco-plastic materials.

Within the framework of linear wave theory, theoretical formulae for the wave
attenuation rate and the modified dispersion relationship of simple harmonic
progressive waves are available if the seabed properties and rheology can be specified
a priori (e.g. Liu 1973; Dalrymple & Liu 1978; Yamamoto et al. 1978; MacPherson
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1980; Wen & Liu 1998; Liu & Chan 2007a). In shallow water, waves are usually
nonlinear and possibly dispersive. Linear wave theory is no longer adequate. In
recent years, Boussinesq-type models have been extensively developed as practical
phase-resolving wave models in both intermediate and shallow water (i.e. from the
continental shelf to the surf zone). The phase-resolving nature of the Boussinesq-type
models is essential in better understanding and predicting nearshore processes (Mei
& Liu 1993). Therefore, transient wave-induced flows inside a seabed require further
attention.

In their study of the interaction of long waves and a viscous fluid mud bed, Liu &
Chan (2007b) presented a new set of Boussinesq equations. Using these equations they
provided the analytical solutions for solitary wave damping. In this paper, we shall
focus our attention on the seepage flows inside a sandy seabed, induced by arbitrary
long waves. Furthermore, we shall consider the situation where some air bubbles have
been trapped in the seabed so that the compressibility of the fluid mixture is not
negligible. Earlier investigations have only concentrated either on the small-amplitude
periodic waves (e.g. Moshagen & Torum 1975) or on fully saturated porous media
flows (e.g. Packwood & Peregrine 1980). Because of the low permeability, the effects of
a sandy seabed on wave motions are usually weak. Therefore, the seepage flow char-
acteristics can be analysed by assuming that the waves have not been affected by the
presence of the permeable seabed. Once the seepage flow solutions are obtained, the
energy dissipation can be estimated by calculating the pressure work done along
the water–seabed interface, which can become significant when waves propagate a
long distance. The seepage flow solutions can also be used to assess the liquefaction
potential in the seabed (Madsen 1974; Packwood & Peregrine 1980; Sumer & Fredsoe
2002; Jeng 2003).

The paper is organized in the following manner. We will first present a general
analytical solution for the seepage flows in a thin layer of seabed, induced by
arbitrary transient long waves. Based on this analytical solution, pore-water pressure
and seepage velocities under periodic waves, cnoidal waves, solitary waves and bores
are examined. To ensure the correctness and the limitations of the analytical solutions,
direct numerical solutions (DNS) for fully coupled wave motions and seepage flows
in the seabed are also obtained by solving the Navier–Stokes equations in the flow
field above the seabed and Darcy’s flow equation in the seabed. On one hand, the
DNS results are compared with the analytical solutions to validate the accuracy of
the numerical scheme. On the other hand, the soundness and the limitations of the
approximations employed in the analytical solutions are further examined with the
DNS solutions. In the discussion section, the liquefaction potential inside the seabed
under various wave conditions is discussed. The energy dissipation and wave damping
rate are also examined for solitary waves.

2. Formulation
We consider a train of periodic waves or transient waves propagating over a

permeable seabed with a thickness of d ′. In the seabed seepage flows are generated
by the dynamic pressure along the water–seabed interface. Darcy’s law can be used
to describe the seepage flow velocity (Bear 1972):

u′ = − k′

ρ ′g′
∂p′

∂x ′ , w′ = − k′

ρ ′g′
∂p′

∂z′ , (2.1)
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where (u′, w′) denotes the horizontal (x ′) and the vertical (z′) components of the
seepage velocity, p′ the pore-water pressure, k′ the hydraulic conductivity of the porous
bed, ρ ′ the density of the fluid, and g′ the gravitational acceleration. Substituting the
above equations into that for the conservation of mass shows that the pore-water
pressure satisfies the following diffusion equation (Bear 1972):

k′

ρ ′g′

(
∂2p′

∂x ′2 +
∂2p′

∂z′2

)
=

n

K
′
w

∂p′

∂t ′ , (2.2)

in which t ′ is the time and n the porosity. K
′
w is the effective bulk modulus of elasticity

of the fluid taking ino account gas (air) in the fluid, i.e.

1

K
′
w

=
1

K ′
w

+
1 − Sr

p′
abs

, (2.3)

where K ′
w is the bulk modulus of elasticity of the pure water, Sr the degree of

saturation, and p′
abs (100 kNm−2) the absolute pore-water pressure. For pure water,

K ′
w is 2.3 × 109 Nm−2. With a small fraction of gas in the water, say Sr =0.995, the

effective bulk modulus of elasticity decreases by almost two orders of magnitude, i.e.

K
′
w =2 × 107 Nm−2.
Denoting the horizontal and vertical length scales for the flow motions in the seabed

as L′
x and L′

z, respectively, and the time scale as T ′, the dimensionless governing
equation for the seepage flows can be expressed as:

Dx

∂2p

∂x2
+ Dz

∂2p

∂z2
=

∂p

∂t
, (2.4)

in which the variables without primes are dimensionless and the dimensionless
parameters Dx and Dz are

Dx =
k′K

′
w

ρ ′g′n

T ′

L′2
x

, Dz = Dx

(
L′

x

L′
z

)2

. (2.5)

The pressure field has been normalized by p′
0 = ρ ′g′a′, where a′ characterizes the wave

amplitude. Along the water–seabed interface, the pressure is continuous:

p = pb(x, t) at z = 0, (2.6)

where pb is the dimensionless dynamic pressure at the seabed associated with the
transient wave propagating above the seabed. Along the rock bottom of the seabed,
z =−d , the no-flux condition is applied

∂p

∂z
= 0 at z = −d. (2.7)

With proper specification of initial condition for the pressure field in the seabed and
two lateral (x-direction) boundary conditions, the initial-boundary-value problem can
be solved. For an arbitrary pressure distribution along the water–seabed interface,
pb(x, t), an analytical solution is not obtainable. However, a numerical solution is
always possible.

It is clear from (2.1) that the seepage velocity scales are k′a′/L′
x and k′a′/L′

z in
the horizontal and vertical directions, respectively. Since the hydraulic conductivity
is usually quite small, e.g. k′ = 10−6 m s−1 for coarse silt and k′ = 10−4 m s−1 for fine
sand, the influence of the seepage flows on wave motions above the seabed is rather
weak. One can first calculate the wave motions above the seabed by assuming that the
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seabed is impermeable. The dynamic pressure along the water–seabed interface can be
found from the wave motion solutions. Once the seepage flow solutions are obtained,
the wave damping rate caused by percolation can be estimated by calculating the
energy dissipation in the seepage flow. However, if the full interaction between the
wave motions and the seepage flows is desirable (i.e. the hydraulic conductivity is very
large) the continuity of the velocity across the water–seabed interface are required
and the flow motions above and inside the seabed must be solved simultaneously.

In the following section, we shall investigate a subset of the physical problems
described by (2.4), for which we can derive analytical solutions. The fully coupled
flow problem will then be discussed in § 4 by means of DNS.

3. Analytical solutions inside the permeable seabed
Since the seepage flows inside the seabed are induced by either transient or periodic

long waves, it is reasonable to choose the characteristic wavelength as the horizontal
length scale. From (2.5), it is obvious that if

O(L′
z) � O(L′

x), then O(Dx) � O(Dz) (3.1)

and the governing equation, (2.4), can be simplified to the one-dimensional diffusion
equation. Hence,

Dz

∂2p

∂z2
=

∂p

∂t
. (3.2)

There are two possible choices for the vertical length scale: either the thickness of
the seabed, d ′, or the vertical diffusion depth corresponding to the time scale of a
transient wave event, T ′. The latter can be defined by employing (2.5) as

L′
z =

(
k′K

′
wT ′

ρ ′g′n

)1/2

. (3.3)

We reiterate here that for a transient wave event, such as a solitary wave, the time
scale, T ′, is effectively finite and the diffusion depth, (3.3), can be either larger or
smaller than the thickness of the porous bed. On the other hand, in the case of
periodic wave loading, if the quasi-steady state is reached, the vertical length scale is
determined by the thickness of the bed.

Introducing a stretched vertical coordinate,

η =
z√
Dz

, (3.4)

the simplified governing equation, (3.2), becomes

∂2p

∂η2
=

∂p

∂t
. (3.5)

From (2.6) the boundary condition along the water–seabed interface can be rewritten
as

p = pb(x, t) at η = 0. (3.6)

Along the rock bottom of the seabed, η = − d = −d/
√

Dz, the no-flux condition, (2.7),
takes the following form:

∂p

∂η
= 0 at η = −d. (3.7)
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Finally, in the following analysis we will assume that the dynamic pressure inside the
seabed is zero initially.

The analytical solution for the two-point initial-boundary-value problem, (3.5),
(3.6), and (3.7), can be obtained by superimposing the fundamental solution for the
diffusion equation and using the method of images to satisfy the boundary conditions.
Thus,

p(x, η, t) =

∫ t

0

∂pb

∂τ
erfc

[
−η√

4(t − τ )

]
dτ

+

∞∑
n=1

(−1)n
∫ t

0

∂pb

∂τ

{
−erfc

[
η + 2nd√
4(t − τ )

]
+ erfc

[
−η + 2nd√

4(t − τ )

]}
dτ. (3.8)

The non-dimensional velocities can be obtained by differentiating the pressure given
in (3.8):

u = −∂p

∂x
= −

∫ t

0

∂2pb

∂τ∂x
erfc

[
−η√

4(t − τ )

]
dτ

−
∞∑

n=1

(−1)n
∫ t

0

∂2pb

∂τ∂x

{
−erfc

[
η + 2nd√
4(t − τ )

]
+ erfc

[
−η + 2nd√

4(t − τ )

]}
dτ, (3.9)

and

w = − 1√
Dz

∂p

∂η
= − 1√

πDz

{∫ t

0

∂pb

∂τ

1√
t − τ

exp

[
− η2

4(t − τ )

]
dτ

+

∞∑
n=1

(−1)n
∫ t

0

∂pb

∂τ

1√
t − τ

(
exp

[
− (η + 2nd)2

4(t − τ )

]
+ exp

[
− (η − 2nd)2

4(t − τ )

])
dτ

}
.

(3.10)

If the pressure at the water–seabed interface, pb, is specified, we can describe the
temporal and spatial variations of the pressure and velocity components inside the
seabed using (3.8), (3.9), and (3.10).

3.1. Comparisons between experimental data and theoretical solutions

In this section, we compare the analytical solutions for the pore-water pressure field
under a sinusoidal wavetrain with the experimental data reported by Oumeraci &
Kudella (2004). In the experiments, sinusoidal waves of wave height H ′ = 2a′ = 0.6 m
and wave period T ′ = 4.5 s propagate in a water depth of 1.6 m. Using the linear
wave theory, the corresponding wavelength is L′

x = 16.88 m. The seabed is made
of medium/fine sand with D′

50 = 0.21 mm and a total thickness d ′ = 2.45 m. The
following soil properties are measured: porosity n= 0.45 and hydraulic conductivity
k′ = 10−4 m s−1. We note that the degree of saturation is not directly measured in the
experiments. Using the measured values for physical variables and estimated value of
Sr = 0.990, the dimensionless parameters can be readily obtained:

L′
z

L′
x

= 0.1451, Dx = 3.6 × 10−3, Dz = 0.169.

Expressing the dynamic pressure at the water–seabed interface, pb, under a sinusoidal
wavetrain as

pb = Re {exp[i2π(x − t)]}, (3.11)
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Figure 1. Comparison of maximum pore-water pressure amplitudes for Sr =0.990 and 1.000:
· · · · ·, two-dimensional analytical solutions (3.12); ——, one-dimensional analytical solutions
(3.8); —·—, two-dimensional DNS solutions; �, the experimental data (Oumeraci & Kudella
2004).

the quasi-steady pressure field inside the porous bed can be analytically obtained as
(e.g. Moshagen & Torum 1975)

p = Re

{
1

cosh λd
cosh λ(η + d) exp [i2π(x − t)]

}
, (3.12)

in which λ is a complex constant with modulus

|λ| =
√

2π[(2πDx)
2 + 1]1/4, (3.13)

and argument

Arg(λ) =
1

2
arctan

(
1

2πDx

)
. (3.14)

We remark here that if the approximation in (3.1) is applicable, Dx can be considered
negligible in (3.13) and (3.14). Thus, λ= (1 − i)

√
π. On the other hand, if the seabed is

saturated, K
′
w becomes much greater than one. The governing equation, (2.2), can be

reduced to the Laplace equation. Therefore, in the dimensional form the pore-water
pressure is no longer a function of the elasticity of the water and decays into the
seabed with the scale of wavelength (e.g. Liu 1973). Hence, λ can be approximated as
a real number: λ= 2π

√
Dx.

Since the value of Dx is not very large in the experiments and the thickness of the
seabed is much smaller than the wavelength, the assumptions made in the theoretical
solutions, (3.8), are satisfied. We anticipate a good agreement between the experimental
data and theoretical results. Oumeraci & Kudella (2004) provided experimental
data for the maximum pore-water pressure amplitude profile under the sinusoidal
wavetrain and their data are shown in figure 1. The integrals in equation (3.8)
are evaluated using Matlab’s ‘quad’ function, which approximates the integral of a
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function to within an error of 10−6 using recursive adaptive Simpson quadrature.
Twenty terms in the series are used, although the solution has already converged
when ten terms are used. In the same figure, we also show the theoretical results
based on (3.12) for both saturated and unsaturated conditions. It is clear that the
pressure response is sensitive to the degree of saturation. Oumeraci & Kudella (2004)
did not directly measure the degree of saturation in their experiments. Based on
the comparisons shown in figure 1, we speculate that the degree of saturation is
about 0.990. We also remark here that the current theoretical solution is a transient
solution where the pressure field begins from a quiescent state. Therefore, the order-
of-magnitude estimation for the time to establish the ‘quasi-steady state’ in the seabed
can be obtained from (3.3) by assigning the thickness of the seabed, d ′, as the vertical
length scale, L′

z. Thus, for the experiments, the diffusion time scale, with Sr = 0.990,
to reach quasi-steady state is about 27 s, which corresponds to six wave periods. The
diffusion time scale becomes shorter for a higher degree of saturation, e.g. 2.8 s for
Sr = 0.999. In the same figure the DNS results, which will be discussed in a later
section, are also shown. The numerical solutions and two analytical solutions agree
reasonably well with the experimental data. The approximate analytical solution fails
for the saturated condition.

3.2. Examples

In this section, we show various features of the pressure field and the velocity field
inside a seabed under different wave loadings, including sinusoidal wave, cnoidal
wave, solitary wave and bore, obtained by assigning Dz = 1 and d = 1.

3.2.1. Sinusoidal wave

The analytical solutions for the pressure field induced by a sinusoidal wavetrain
have been presented for a specific experiment in the previous section. Here we
provide a general and broader discussion. In figure 2 the time histories of pressure and
velocity components at x =0 are plotted at three different elevations, η =0, −0.5, −1.0,
respectively. Since (3.8) is derived from an initially quiescent state, with the chosen
parameters (Dz = 1 and d =1) it takes a couple of wave periods to establish the ‘quasi-
steady state’, when the vertical diffusion length scale is the same as the thickness of the
seabed. Note that initially the constant reference pressure is unity so that the velocity
components are zero initially. The phase lags between the pressure and velocity
responses at different elevations are apparent. The vertical pressure profiles at x =0
and at four phases during the third wave period, calculated from the periodic solution
(3.12) and the transient solution (3.8), are compared in figure 3(b). Also plotted are
vertical profiles of x- and z-velocity components (figures 3c and 3d), where the periodic
solutions are obtained by differentiating (3.12). The present approximate solutions
are almost identical to the two-dimensional analytical solution, suggesting that the
approximations employed in the present theory are satisfied.

Under the wave crest, the dynamic pressure reaches the maximum value at the
water–seabed interface and decays quickly into the seabed, resulting in a downward
(negative) seepage velocity. As the wave crest passes the observation point, x = 0,
the dynamic pressure decreases on the interface. However, the dynamic pressure
increases near the bottom of the seabed. Consequently, upward (positive) seepage
velocities are developed. As the wave trough approaches the observation point, the
dynamic pressure becomes negative in the seabed with upward seepage velocities in
the entire seabed column. The implications of the upward seepage velocity on the
seabed stability will be discussed later. As the wave crest approaches, the dynamic
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Figure 2. Time histories of dimensionless dynamic pressure, p, dimensionless horizontal
seepage velocity, u, and dimensionless vertical seepage velocity, w, in a seabed under a
periodic wavetrain at three different vertical locations inside the seabed: ——, η = 0; · · · · ·,
η = −0.5; —·—, η = −1.0.

pressure in the seabed becomes positive with a downward seepage velocity again.
Finally, we remark here that the vertical profiles of the dynamic pressure and the
velocity components are symmetric with respect to the wave crest and the wave
trough.

3.2.2. Cnoidal wave

The cnoidal wave can be defined by two dimensionless parameters: the nonlinearity
ε = a′/h′, and the modulus of the elliptic integral m, where 0 < m < 1. Denoting the
complete elliptic integrals of the first and second kinds with modulus m as K and
E, respectively, the dimensionless dynamic pressure along the water–seabed interface,
pb, can be expressed as (Mei 1983)

pb =
K

K − E

[(
1 − m − E

K

)
+ mCn2(2Kξ )

]
, (3.15)

where Cn is the Jacobi elliptic function,

ξ = x − Ct (3.16)

and the dimensionless wave speed is

C =

[
1 +

εK

K − E

(
−m + 2 − 3E

K

)]1/2

. (3.17)
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Figure 3. Vertical profiles of dimensionless dynamic pressure, p (b), dimensionless horizontal
seepage velocity, u (c), and dimensionless vertical seepage velocity, w (d), in a seabed under a
periodic wavetrain: ——, two-dimensional analytical solutions (3.12); �, numerical integrations
of (3.8). (a) The time history of the dimensionless dynamic pressure at the water–seabed
interface, pb. The vertical profiles are plotted at four different phases as indicated by numbers
in brackets, corresponding to four columns.

Note that the wavelength has been used as the characteristic length scale, L′
x , which

is given by

L′
x

h′ = 4K

(
K − E

3εK

)1/2

. (3.18)

Cnoidal waves reduce to sinusoidal waves as m approaches zero, while as m goes to
1, they become a series of solitary waves. However, these two parameters ε and m are
not entirely independent, that is, for a given m, there is a maximum possible value of
ε which allows C in (3.17) to exist.

To evaluate the dynamic pressure inside the seabed, we need to differentiate (3.15)
with respect to t:

∂pb

∂t
=

4mCK2

K − E
Cn(2Kξ )Sn(2Kξ )Dn(2Kξ ), (3.19)

where Cn, Sn, and Dn are Jacobi elliptic functions. As an example, solutions are
obtained for the dimensionless dynamic pressure and velocity field corresponding to
ε = 0.2 and m =0.9 In figure 4, time histories of pressures and velocities at x =0
and at three elevations are shown. These solutions have already converged to the
quasi-steady-state solutions at the end of the first period, as in the case of sinusoidal
waves. Again, the upward (positive) seepage velocities exist and occur during different
time intervals depending on the elevations.
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Figure 4. Time histories of dimensionless dynamic pressure, p, dimensionless horizontal
seepage velocity, u, and dimensionless vertical seepage velocity, w, in a seabed under a
cnoidal wavetrain at three different vertical locations inside the seabed: ——, η = 0; · · · · ·,
η = −0.5; —·—, η = −1.0.

Vertical profiles of the pressure, together with x- and z-velocity components inside
the seabed during the third period are plotted in figure 5. The vertical profiles are
similar to those of sinusoidal waves, except that they are not symmetric under cnoidal
waves.

3.2.3. Solitary wave

Under a solitary wave, the dimensionless dynamic pressure along the water–seabed
interface can be calculated as

pb = sech2

[√
3ε

4µ2
ξ

]
, (3.20)

where

ξ = x − Ct, C =
√

1 + ε, µ =
h′

L′
x

. (3.21)

In the following analysis we select ε =µ2 = 0.2 as an example. Time histories of p, u,
and w at three different elevations, η = 0, −0.5, and −1.0, respectively are presented
in figure 6. Figure 7 shows the vertical profiles of these quantities at several phases.
It is interesting to observe that under a solitary wave, water particles above the
seabed always move in the same direction as that of wave propagation. However,
the horizontal component of the seepage velocity reverses its direction when the
horizontal pressure gradient changes its sign. The corresponding vertical component
of the seepage velocity also changes direction from negative (downward) to positive
(upward).
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Figure 5. Vertical profiles of dimensionless dynamic pressure, p (b), dimensionless horizontal
seepage velocity, u (c), and dimensionless vertical seepage velocity, w (d), in a seabed under
a cnoidal wavetrain. (a) The time history of the dimensionless dynamic pressure at the
water–seabed interface, pb. The vertical profiles are plotted at four different phases as indicated
by numbers in brackets, corresponding to four columns.
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Figure 6. Time histories of dimensionless dynamic pressure, p, dimensionless horizontal
seepage velocity, u, and dimensionless vertical seepage velocity, w, in a seabed under a
solitary wave at three different vertical locations inside the seabed: ——, η = 0; · · · · ·, η = −0.5;
—·—, η = −1.0.
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Figure 7. Vertical profiles of dimensionless dynamic pressure, p (b), dimensionless horizontal
seepage velocity, u (c), and dimensionless vertical seepage velocity, w (d), in a seabed under a
solitary wave. (a) The time history of the dimensionless dynamic pressure at the water–seabed
interface, pb . The vertical profiles are plotted at five different phases as indicated by numbers,
corresponding to five columns.

3.2.4. Bore

Packwood & Peregrine (1980) suggested the following water–seabed interface
pressure distribution under a bore:

pb =
1

2

{
1 − tanh

[√
3ε

4µ2
(x − V t)

]}
, (3.22)

where V is the bore velocity. Using this model pressure distribution along the water–
seabed interface, the pore-water pressure and the seepage velocity components inside
the seabed are calculated (see figure 8 and figure 9), setting ε = µ2 = 0.2. As can be
seen in these figures, pb gradually increases from zero to the maximum value and then
maintains the maximum value. Figure 9 shows the vertical profiles of these quantities
at several phases. While the time history of the horizontal seepage velocity looks like
an elevated (positive) soliton, the vertical component looks like a depression (negative)
soliton. The peaks of these solitons are shifted from one elevation to another and the
diffusion processes are clearly observed in these figures.

4. Direct numerical simulations
The analytical solutions given by (3.8) are limited to the physical condition in which

the vertical length scale, either the thickness of the seabed or the diffusion length scale,
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Figure 8. Time histories of dimensionless dynamic pressure, p, dimensionless horizontal
seepage velocity, u, and dimensionless vertical seepage velocity, w, in a seabed under a
bore at three different vertical locations inside the seabed: ——, η = 0; · · · · ·, η = − 0.5; —·—,
η = −1.0.

is much smaller than the horizontal length scale (i.e. wavelength). Furthermore, the
effects of the seepage flows on wave motions are ignored. In this section we present
direct numerical simulations without the approximations adopted in the analytical
solutions. The direct numerical simulations are based on a two-dimensional Navier–
Stokes equation solver with the capability of tracking free-surface movements with a
volume of fluid (VOF) method (Lin & Liu 1998). The Navier–Stokes equation solver
is coupled with the governing equation for the seepage flows in the seabed, (2.2).
The continuity of velocity components and pressure constitutes the necessary
boundary conditions coupling wave motions and flows in the seabed. Therefore,
solutions obtained from the direct numerical simulations contain the influence of the
seabed on wave propagation.

The two-step projection method (Chorin 1968) is used in the Navier–Stokes equation
solver and during the second step the intermediate velocity field (u′∗, w′∗) is projected
onto a divergence-free plane to obtain the Poisson pressure equation (PPE) as (in the
dimensional form)

∂

∂x ′

(
1

ρ ′n
∂p′n+1

∂x ′

)
+

∂

∂z′

(
1

ρ ′n
∂p′n+1

∂z′

)
=

1

�t ′

(
∂u′∗

∂x ′ +
∂w′∗

∂z′

)
, (4.1)

in which the superscript n+1 denotes the (n+1)th time step. The governing equation
for the flows in the seabed, (2.2), can be cast in a similar way (in the dimensional
form):

∂

∂x ′

(
1

ρ ′n
∂p′n+1

∂x ′

)
+

∂

∂z′

(
1

ρ ′n
∂p′n+1

∂z′

)
− ng′

k′K
′
w�t ′

p′n+1 =
ng′

k′K
′
w�t ′

p′n, (4.2)

in which �t ′ is the time step size. Equations (4.1) and (4.2) are solved simultaneously
with the requirement that the pressure field is continuous across the water–seabed
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Figure 9. Vertical profiles of dimensionless dynamic pressure, p (b), dimensionless horizontal
seepage velocity, u (c), and dimensionless vertical seepage velocity, w (d), in a seabed under
a bore. (a) The time history of the dimensionless dynamic pressure at the water–seabed
interface, pb . The vertical profiles are plotted at five different phases as indicated by numbers,
corresponding to five columns.

interface. Once the pressure field is calculated, the flow velocity inside the seabed
can be calculated directly from Darcy’s law, (2.1). Detailed descriptions of the VOF
method and the implementations of boundary conditions with the two-step projection
method can be found in Lin & Liu (1998) and Lin (1998).

4.1. Numerical set-up

Numerical results to be presented in the following sections are based on direct
numerical simulations in a numerical wave flume which is 20 m long with a water
depth of 0.5 m. A numerical wavemaker is installed at the left-hand end of the flume
and the first 2 m of the flume has a rigid bottom so that the wavemaker movements
do not interact with the seabed directly. A seabed with prescribed properties is
placed in the rest of the flume. A sponge layer is installed near the end of the the
numerical wave flume to absorb the outgoing waves. The length of the sponge layer is
adjustable for the best efficiency of wave dissipation. In all simulations, the numerical
wave reflection from the end of the computational domain is typically less than 5 %
of the incident wave. Uniform rectangular grids (2 cm×1 cm) are used. Solitary waves
with 0.1 m wave height are generated using Goring’s theory (Goring 1978). To be
consistent with the example given in § 3.2.3, we have fixed ε = µ2 = 0.2.

4.2. Numerical results for Dz � Dx

In the development of our theoretical solution, we have assumed that the horizontal
length scale (L′

x) is much larger than the vertical length scale (L′
z), so that the
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Figure 10. Time histories of dimensionless dynamic pressure, p, dimensionless horizontal
seepage velocity, u, and dimensionless vertical seepage velocity, w, in a seabed under a solitary
wave at three different vertical locations inside the seabed obtained from two-dimensional
DNS solutions and one-dimensional analytical solutions, respectively, for Dz � Dx: ——, DNS
data at η = 0; · · · · ·, DNS data at η = −0.19; — · —, DNS data at η = −0.38; �, analytical
solution at η = 0; �, analytical solution at η = −0.19; �, analytical solution at η = −0.38.

governing equation can be approximated as a one-dimensional problem, i.e. Dz � Dx .
In this section, we obtain DNS results for this situation. The thickness of the seabed,
d ′, is assumed to be the same as the water depth, i.e. d ′ =0.5 m. By choosing the
thickness of the seabed as the vertical length scale, Dx and Dz are calculated as 0.03
and 7.03, respectively. Thus, Dz � Dx is an adequate assumption.

To compare the results from the analytical solution and the DNS, the dynamic
pressure at the water–seabed interface obtained from the DNS is used as the forcing
for the theoretical solution. The dynamic pressure at the interface is curve-fitted using
the sum of five Gaussian functions:

pb(ξ ) =

5∑
i=1

ai exp
[
(ξ − bi)

2/c2
i

]
, (4.3)

where, ξ = x − Ct is a moving coordinate as defined earlier, and ai , bi , and ci are
parameters for the curve-fitting. The R-square value for the fitting is 0.9996.

Figure 10 shows the time histories of dynamic pressure and horizontal and vertical
seepage velocity components at the centre of the numerical flume (x ′ = 10 m) at three
vertical locations, z = z′/d ′ = 0, −0.5, −1.0. The two different solutions agree fairly
well. In the DNS calculation, the solitary wave has travelled a distance of twenty
water depths (or about one wavelength) before reaching the mid-section of the flume.
The wave-seabed interaction has resulted in minor wave deformation, which can
be seen in the time history of dynamic pressure at the water–seabed interface. The
vertical profiles of pressure and velocity components evaluated at four wave phases
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Figure 11. Vertical profiles of dimensionless dynamic pressure, p (b), dimensionless horizontal
seepage velocity, u (c), and dimensionless vertical seepage velocity, w (d), in a seabed under a
solitary wave for Dz � Dx: ——, two-dimensional DNS solutions; · · · · ·, one-dimensional
analytical solution. (a) The time history of the dimensionless dynamic pressure at the
water–seabed interface, pb . The vertical profiles are plotted at four different phases as indicated
by numbers, corresponding to four columns.

are presented in figure 11. Overall, good agreement between the solutions is observed.
The horizontal velocity, however, shows larger discrepancies, possibly because the
slight error in curve-fitting of the dynamic pressure at the water–seabed interface is
amplified when the double differentiation is performed in calculating the horizontal
velocity, (3.9). Figure 12 shows the contour plot of dimensionless dynamic pressure,
p, on (−ξ )−η (i.e. time − vertical coordinate) space at a fixed x-location. It is clear
that at a given time (−ξ value) the pressure is almost uniform in the entire seabed,
i.e. the influence of wave loading has reached the bottom of the seabed almost
instantaneously. Thus, the choice of the vertical length scale is justified.

4.3. Numerical results for Dz ≈ Dx

In this section, we increase the thickness of the seabed by the factor of 10, i.e. d ′ = 5 m.
Other parameters are identical to those used in the previous section. Dx and Dz are
calculated as 0.03 and 0.07, respectively if the thickness of the seabed is used as the
vertical length scale. Clearly, since Dz ≈ Dx the assumption for the analytical solution
is not satisfied in this case. However, very good agreement between the analytical
solutions and DNS results can be seen in figures 13 and 14 for the time histories
and vertical profiles of pressure and velocity components in the seabed. This is
not surprising. Since the wave period of the solitary wave is roughly 3.5 s, the diffusion
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Figure 12. Contours of dimensionless dynamic pressure, p, under a solitary wave for
Dz � Dx , on (−ξ )−η (i.e. time − vertical coordinate) space at a fixed x-location.
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Figure 13. Time histories of dimensionless dynamic pressure, p, dimensionless horizontal
seepage velocity, u, and dimensionless vertical seepage velocity, w, in a seabed under a solitary
wave at three different vertical locations inside the seabed obtained from two-dimensional
DNS solutions and one-dimensional analytical solutions, respectively, for Dz ≈ Dx: ——, DNS
data at η = 0; · · · · ·, DNS data at η = −1.89; —·—, DNS data at η = −3.78; �, analytical
solution at η = 0; �, analytical solution at η = −1.89; �, analytical solution at η = −3.78.
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Figure 14. Vertical profiles of dimensionless dynamic pressure, p (b), dimensionless horizontal
seepage velocity, u (c), and dimensionless vertical seepage velocity, w (d), in a seabed under a
solitary wave for Dz ≈ Dx: ——, two-dimensional DNS solutions; · · · · ·, one-dimensional
analytical solutions. (a) The time history of the dimensionless dynamic pressure at the
water–seabed interface, pb . The vertical profiles are plotted at five different phases as indicated
by numbers, corresponding to five columns.

length scale can be calculated from (3.3) as 1.4 m, which is much smaller than the
thickness of the seabed. This is illustrated in figure 15.

5. Discussion
5.1. Liquefaction potential inside the seabed

Momentary liquefaction could occur when the vertical or the horizontal pressure
gradient exceeds a certain value. For example, Bear (1972) argued that the porous
bed can be momentarily and locally fluidized if the vertical net force on a granular
particle is zero. This implies that in terms of dimensional variables:

w′

k′ >
γ ′

s

γ ′
f

, (5.1)

in which γ ′
s is the submerged specific weight of the particle and γ ′

f = ρ ′g′ the specific
weight of water. In terms of the dimensionless variables employed in this paper, the
liquefaction criterion becomes

−∂p

∂η
�

γ ′
s

γ ′
f

L′
z

√
Dz

a′ , (5.2)
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Figure 15. Contours of dimensionless dynamic pressure, p, under a solitary wave for
Dz ≈ Dx , on (−ξ )−η (i.e. time − vertical coordinate) space at a fixed x-location.

which can be further reduced to

−∂p

∂η
�

γ ′
s

γ ′
f

L′
x

√
Dx

a′ =
γ ′

s

γ ′
f

L′
x/h′

ε

√
Dx, (5.3)

where L′
x/h′ is either given in (3.18) for the cnoidal wave, or specified as 1/µ for the

solitary wave and the bore, while Dx is given in (2.5). It is clear that the momentary
liquefaction can occur more easily for smaller values of Dx , which corresponds to a
lower degree of saturation in the seabed.

On the other hand, Madsen (1974) suggested that the momentary liquefaction can
also occur if the pore-water pressure gradient in the horizontal direction exceeds the
intergranular stress. After making several simplifying assumptions, Madsen (1974)
presented the following criterion:∣∣∣∣∂p∂x

∣∣∣∣ �
γ ′

s

γ ′
f

tan θ
L′

x/h′

ε
, (5.4)

where θ is the internal friction angle.
As an example, we consider a wavetrain in a coastal region of 10 m water

depth, which can be described as a cnoidal wave with ε =0.2 and m =0.6. The
corresponding wavelength and the wave period can be calculated as L′

x = 78 m and
T ′ = 8.8 s, respectively. The seabed of thickness d ′ = 10 m is made of relatively loose
sand with hydraulic conductivity k′ = 10−4 m s−1, porosity n= 0.3, and the degree
of saturation Sr =0.995. The effective bulk modulus of elasticity can be calculated

as K
′
w =2 × 107 Nm−2. We further assume that γ ′

s tan θ/γ ′
f = 0.5. Thus, the critical

pressure gradients in both directions, (5.3) and (5.4), are determined as 2.46 in
the vertical direction and 14.54 in the horizontal direction, respectively. Using the
theoretical solutions, (3.9) and (3.10), the maximum pore-water pressure gradients
along the water–seabed interface under the specified wave conditions are 2.02 and
5.98 in the vertical and the horizontal directions, respectively. Thus, under the present
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wave conditions and seabed properties, the vertical as well as the horizontal pore-
water velocities are not strong enough to cause momentary liquefaction. We reiterate
here that this analysis is sensitive to the degree of saturation. That is, if Sr is changed

to 0.990, the effective bulk modulus of elasticity of the fluid, K
′
w , decreases by half

(1 × 107 Nm−2), and the critical vertical pressure gradient decreases to 1.73, which is
now smaller than the maximum vertical pore-water pressure gradient. Consequently,
the momentary liquefaction can occur.

5.2. Wave damping rate

Packwood & Peregrine (1980) argued that the energy dissipation rate inside the
seabed can be calculated by integrating the pressure work done along the water–
seabed interface. Scaling the energy dissipation rate as

1

2
ρ ′g′a′2

o

L′
x

T ′ ,

the dimensionless energy dissipation rate can be calculated from

D = 2a2k′ T
′

L′
x

L′
x

L′
z

∫
Γ

pw |η=0 dx, (5.5)

where the local dimensionless wave amplitude, a, has been scaled by the initial (or
undamped) wave amplitude a′

o and the integration on the right-hand side is integrated
over Γ , which is the effective wavelength for the periodic waves and solitary waves.
Given the expression for the total wave energy within one wavelength, E′

t , which can
be normalized by

1

2
ρ ′g′a′2

o L′
x,

the dimensionless wave damping rate can be found from the following relationship:

D = dEt/dt. (5.6)

Up to the first order of accuracy, the dimensionless wave energy in a wavelength
per unit width can be expressed as follows:

Et = a2 (5.7)

for the sinusoidal wave,

Et = 2H 2f (m), (5.8)

where

f (m) =
1

3m2

{
2(2 − m)

E

K
− 3

E2

K2
− (1 − m)

}
, (5.9)

for the cnoidal wave (Miles 1979), and

Et =
16

3
√

3

µ

ε1/2
a3/2 (5.10)

for the solitary wave (Longuet-Higgins 1974). Note that f (m) becomes 1/8 as m goes
to zero, and that (5.8) reduces to (5.7) with H = 2a. On the other hand, as m increases
to 1, f (m) can be approximated as

f (m) ≈ 8

3
√

3

µ√
Hε1/2

; (5.11)
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Figure 16. The wave amplitude attenuation of a solitary wave due to the seepage flows in a
shallow seabed: ——, Sr = 0.990 and · · · · ·, Sr = 0.995 calculated from (5.15); —·—, Sr = 1.000
calculated from the expression by Packwood & Peregrine (1980).

thus, (5.8) becomes (5.10) with H = a. To be consistent with the other cases, (5.8) can
be rewritten in terms of the wave amplitude (a, the maximum positive water-surface
displacement):

Et =
2

3

[
2(2 − m)EK − 3E2 − (1 − m)K2

(K − E)2

]
a2. (5.12)

By substituting (5.7), (5.10), and (5.12) into (5.6), respectively, we can obtain
expressions for the rate of wave amplitude changes in the following dimensionless
forms:

da

dt
= a

(
k′T ′

L′
z

∫
Γ

pw |η=0 dx

)
(5.13)

for sinusoidal waves,

da

dt
= a

[
k′T ′

L′
z

3(K − E)2

2 {2(2 − m)EK − 3E2 − (1 − m)K2}

∫
Γ

pw |η=0 dx

]
(5.14)

for cnoidal waves, and

da

dt
=

ε1/2

µ
a3/2

(√
3

4

k′T ′

L′
z

∫
Γ

pw |η=0 dx

)
(5.15)

for a solitary wave. Note that (5.13), (5.14), and (5.15) are nonlinear differential-
integral equations for the dimensionless wave amplitude and must be solved
numerically.

As an example, we examine here the damping rate of a solitary wave with initial
wave amplitude a′

o = 0.04 m in a water depth h′ = 0.1 m (ε = 0.4) over a permeable
seabed of thickness d ′ = 0.1 m (L′

z = d ′). The seabed is composed of coarse sand
(k′ = 10−2 m s−1) with porosity n= 0.3. The effective wavelength L′

x = 1.09 m is defined
as the distance within which 99 % of the surface elevation of the solitary wave is
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included. Thus µ = 0.089 and the corresponding effective wave period is T ′ = 0.93 s.
Euler’s method with the time step �t ′ = 1 s is used to solve (5.15). The results are
presented in figure 16 for three different degrees of saturation, where the results for
saturated flows are taken from the expression suggested by Packwood & Peregrine
(1980). The wave damping rate is smaller for the unsaturated cases. For the saturated
flow, the entire flow field responds instantaneously to the wave loading at the water–
seabed interface. On the other hand for the unsaturated flows, only a portion of the
seabed is affected. Consequently, a smaller amount of pressure work is required and
leads to a smaller wave damping rate in the unsaturated flow case.

6. Concluding remarks
In this paper we have presented an approximate analytical solution for the seepage

flows induced by an arbitrary wave field above the permeable seabed, which is
assumed to be partially saturated. The analytical solutions require the condition that
the horizontal length scale is much greater than the vertical length scale, which can
be satisfied when the wavelength of the wave field is much longer than the thickness
of the seabed or, in the case of a transient wave event, the vertical diffusion scale.
The hypotheses are confirmed by the DNS.

The analytical solutions are used to examine the liquefaction potential under various
wave conditions. With the limited understanding of the criterion for momentary
liquefaction, we still can conclude that the potential for liquefaction is much higher
for the unsaturated flows. Formulae for estimating damping rate for different wave
types are also presented. Numerical example shows that flows with higher degree of
saturation induce higher wave damping. When the seabed is made of fine sand, the
impact of the seabed on wave propagation is small and slow. If the seabed is made
of coarse sand or shingle, the impact might increase and the interaction between
wave motions and seepage flows might become significant. For future work, a set of
Boussinesq-type equations with effects of seepage flows could be derived in a similar
approach to that employed by Liu & Orfila (2004).

The authors would like to dedicate this paper to Professor Howell Peregrine who
passed away on March 20, 2007.
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